Archive for the 'Museum News' Category

July 8th, 2020 ~ by admin

News: New Server for CPU Shack

It took way longer then it should have but over the last 5 weeks CPUShack.com was transitioned to a new server.  We were hosted on a Media Temple GRID server, which got less and less suited for WordPress over the years so ended up with hundred of dollars in overages everytime i posted an article.  CPU Shack is now on a virtual dedicated server which should be faster and more flexible.  Next step will be to add SSL support, to keep up with current web guidelines.

If you notice anything not working, be sure to let me know.

Posted in:
Museum News

December 27th, 2019 ~ by admin

RIP Chuck Peddle: Father of the 6502

Original MOS 6501 Processor from 1975 – Designed by Chuck Peddle.

On December 15th one of the truly greats of processor design passed away at age 82.  Chuck Peddle, born in 1937, before semiconductors were even invented, designed the 6502 processor back in 1974.  The 6502 (originally the 6501 actually) went on to become one of the most popular and widely used processors of all time.  It powered the likes of the Apple 1, Commodores, ATARIs and hundred of others.  It was copied, cloned, and expanded by dozens of companies in dozens of countries.  It was so popular that computers were designed to use it in the Soviet Union, eventually making their own version (Pravetz in Bulgaria).

Sitronix ST2064B – Based on the 65C02 – Core is visible in the upper right of the die. (photo by aberco)

The 6502 was a simple but useful 8-bit design, which meant that as time went along and processors migrated to 16 32 and 64-bits and speeds jumped from MHz to GHz the venerable 6502 continued to find uses, and be made, and expanded.  Chuck continued to be involved in all things 6502 until only a few years ago, designing new ways to interface FLASH memory (which hadn’t been invented when he designed the 6502) to the 6502.

The chips themselves, now in CMOS of course, continue to be made to this day by Western Design Center (WDC) and the 65C02 core is used in many many applications, notably LCD monitor controllers and keyboard controllers.  We can hope that the 6502 will have as long of life as Mr. Peddle, though I woud wager, that somewhere, somehow , in 2056 a 6502 will still be running.

Tags:
,

Posted in:
Museum News

September 18th, 2019 ~ by admin

Pardon the Mess…Upgrading PHP – FIXED

Moving The CPU Shack to PHP 7 and it has broken some old legacy code (now why would a museum have old code? ha).  A few things (like the header and the OLD pictures section) are not working, should be fixed soon.

Thanks!

EDIT: Looks like we got it all fixed, if ya notice anything broken/not working let me know

 

Posted in:
Museum News

November 20th, 2018 ~ by admin

The CPU Shack Museum Goes to SC18 in Texas

Well, at least some of our processors did.  SC18 was the 30th annual International Conference for High Performance Computing, Networking, Storage, and Analysis, held in Dallas, TX.  Being as this was the 30th anniversary, organizers wanted to provide a look back over the past 30 years of the conference, as well as the past 30 years of High Performance Computing.  Earlier this year CPU Shack published an article covering a large amount of this history of Supercomputers.  The SC18 exhibit had an actual Cray-1B Supercomputer and many other interesting relics.  The CPU Shack Museum loaned a variety of processors, from a Processor Node from an Intel Paragon Super Computer, to POWER and SPARC processors, and even a GRAPE-6 processor.

Here are a few images of the conference.  The first two images (681 and 683) show the entrance area, entrance signage, the Cray-1B, and some of the display cabinets and diagrams on the wall above the cabinets showing year-by-year SCinet configurations.

SC18 Entrance w/ Display Cabinets

The Cray-1B was one of the first things the over 13,000 attendees got to see.

Cray-1B on the right

In the display cases were many vintage items from past conferences, as well as an assortment of processors.

SC18 Display Case: Spot the POWER, SPARCs,, GRAPE, and even a BlueGene compute node

The displays and processors generated many conversations, questions, and reminisces. There was over 350 exhibits from companies and Universities around the world.  The CPU Shack Museum is happy to have been able to help in a small way.

Posted in:
Museum News

June 26th, 2018 ~ by admin

Image Gallery Thumbnails working again..

Good News! The issue with the Thumbnails not working in the galleries here  has been resolved,   They aren’t super fast loading, but they do work.  This means I can start uploading a few thousand new ones.

Posted in:
Museum News

March 21st, 2018 ~ by admin

Intel’s Chipped Chips

Early Intel 8080A processor (no date code) chipped and used in a Uni kit

Typically when collecting something, be it coins, cars or CPU’s having the most pristine unblemished example is highly desirable.  However, sometimes, the best example is one that isn’t perfect, in coin collecting it may be a rare double struck coin, or some other flaw that actually makes the coin more valuable.

In the 1970’s Intel put together many development kits for it’s processors.  These were to help engineers, companies, and even students learn how to use Intel’s products. Intel made several kits specifically for University use, including one based around the MCS-80 processor and another around the MCS-48 microcomputer.  The 8080 University kit came with an 8080 processor, and a variety of support chips, including RAM, EPROMs (usually 1702s), clock drivers, bus drivers etc.  They were often a mix of packages, including plastic, and ceramic, with many chips being marked ‘CS‘ which is Intel’s designation for a Customer Sample.

Military MC8080A CS from a Uni kit. Multiple chipped corners. Such damage often was a result of improper packing in an IC shipping tube.

The price of the kits was kept low, the purpose was to get people use to using Intel products, not to make money.  Due to this, Intel tried to build the kits in the most efficient way possible.  Almost every 8080 University kit included a working, but cosmetically damaged C8080A processor.  These were typically the white/gold ceramic variety with a chipped corner.   It was very common to see a MC8080A or MC8080A/B military spec processor in a University kit, the processor would function fine, but had  some damage, enough that it could not be sold as a mil-spec processor (which has requirements for screening out such damage). The damaged chip would simply be tested, stamped ‘CS‘ and stuck in a kit, ths saving Intel money and keeping a working processor from being wasted.   The same thing happened with the MCS-48 University kits, these included chips such as the D8035 or C8748 MCU, and again, often shipped with damaged chips.

It turns out that the most correct, authentic chip, in a University Kit, was the cosmetically challenged, and in a way, this makes them more uncommon and more interesting.  Its due to their damage that they were selected for the special use in a University kit.  The irony is that many times it was the highest end military screened chips, that ended up getting used in one of the lowest end products.

October 22nd, 2017 ~ by admin

The CPU Shack Gets a Scope

Microscope – Packed with a free roll of tape

For quite some time I have wanted a microscope for the Museum.  It would be very useful for inspecting unknown wafers and dies, as well as learning a lot more about EPROM dies.  So often one die is used for many devices, often of different sizes or even manufacturers.  Recently the Museum also received a whole bunch of MIPS prototypes, mostly all unmarked, and all with open die covers.  The only way to positively identify them, and find all the die art that the MIPS designers added, is with a scope.

Make that 2 rolls of tape

A good deal on an Accu-Ray 3035 inverted metallurgical scope showed up on eBay.  These sell new for over $2000 so at under $400 it was a good deal.  Its cost was covered by donations by many other collectors around the world, who are most likely hoping it results in more interesting article and

pretty pictures.  Metallurgical scopes are a bit different from your typical microscope.  The ‘normal’ scope is a transmitted light device, shining light THROUGH the sample into the objective.  Clearly this doesn’t work for opaque and solid items, such as wafers.  These need to use reflected light, which is a bit harder to work with.  Light is shown on the sample and reflected back into the objective.  The Accu-Ray came with 10x, 25x 40x and 60x objectives, though for wafer work 25x really is about the limit of what is needed (and it gets harder to light samples at the higher magnifica

Accu-Ray 3035 Inverted Microscope

tions).  The standard eyepieces are 10x so this results in 100x-250x magnification.  I have ordered a 4x objective and a 20x as well, which should give a good range.  The higher power

objectives have a smaller working distance, meaning they have to be much closer to the wafer/die, that can be tricky when the die is mounted in a package, or several millimeters under a window on an EPROM.

The physics of a microscope are a well understood science, getting light through the scope, to the wafer, and to the eyepiece in a way you can see anything turns out to be more of an art.  Dealing with a mirror like silicon surface, glare becomes a huge problem, so that is what I am

Quick shot through the eyepiece of a MIP R10000

learning about now, how to light the wafers.  The included halogen light is very nice and very bright but with wafers results in massive glare that makes seeing the wafer near impossible.  Using and LED flashlight (it bolts right up to the scope, surprisingly) results in much more even lighting, albeit less of it.  I have ordered a diffuser which should help even out the light from the halogen, hopefully that helps.

As soon as I get a good reliable set up you can look forward to some interesting pictures and hopefully some interesting new information.

Tags:

Posted in:
Museum News

January 28th, 2017 ~ by admin

Stratus: Servers that won’t quit – The 24 year running computer.

Stratus XA/R (courtesy of the Computer History Museum)

Making the rounds this week is the Computer World story of a Stratus Tech. computer at a parts manufacturer in Michigan.  This computer has not had an unscheduled outage in 24-years, which seems rather impressive.  Originally installed in 1993 it has served well.  In 2010 it was awarded for being the longest serving Stratus computer, then being 17 years.  Phil Hogan, who originally installed the computer in 1993, and continues to maintain it to this day said in 2010  “Around Y2K, we thought it might be time to update the hardware, but we just didn’t get around to it”  In other words, if it’s not broke, don’t fix it.

Stratus computers are designed very similar to those used in space.  The two main difference are: 1) No need for radiation tolerant designs, let’s face it, if radiation tolerance becomes an issue in Michigan, there are things of greater importance than the server crashing and 2) hot swappable components.  Nearly everything on a Stratus is hot-swappable.  Straus servers of this type are based on an architecture they refer to as pair and spare.  Each logical processor is actually made from 4 physical CPU’s.  They are arranged in 2 sets of pairs.

Stratus G860 (XA/R) board diagram. Each board has 2 voting i860. (the pair) and each system has 2 boards (the spare).  The XP based systems were similar but had more cache and supported more CPUs.

Each pair executes the exact same code in lock-step.  CPU check logic checks the results from each, and if there is a discrepancy, if one CPU comes up with a different result than the other, the system immediately disables that pair and uses the remaining pair.  Since both pairs are working at the same time there is no fail-over time delay, it’s seamless and instant.  The technician can then pull the mis-behaving processor rack out and replace it, while the system is running.  Memory, power supplies, etc all work in similar fashion.

These systems typically are used in areas where downtime is absolutely unacceptable, banking, credit card processing, and other operations are typical.  The exact server in this case is a Stratus XA/R 10.  This was Stratus’s gap filler.  Since their creation in the early 1980’s their servers had been based on Motorola 68k processors, but in the late 1980’s they decided to move to a RISC architecture and chose HP’s PA-RISC.  There was a small problem with this, it wasn’t ready, so Stratus developed the XA line to fill in the several years gap it would take. The first XA/R systems became available in early 1991 and cost from $145,000 to over $1 million.

Intel A80860XR-33 – 33MHz as used in the XA/R systems. Could be upgraded to an XP.

The XA is based on another RISC processor, the Intel i860XR/XP.  Initial systems were based on 32MHz i860XR processors.  The 860XR has 4K of I-cache and 8K of D-cache and typically ran at 33MHz.  Stratus speed rating may be based on the effective speed after the CPU check logic is applied or they have downclocked it slightly for reliability. XA/R systems were based on the second generation i860XP.  The 860XP ran at 48MHz and had increased cache size (16K/16K) and had some other enhancements as well.  These servers continued to be made until the Continuum Product Line (Using Hewlett Packard “PA-RISC” architecture) was released in March of 1995.

This type of redundancy is largely a thing of the past, at least for commercial systems.  The use of the cloud for server farms made of hundreds, thousands, and often more computers that are transparent to the user has achieved much the same goal, providing one’s connection to the cloud is also redundant.  Mainframes  and supercomputers are designed for fault tolerance, but most of it is now handled in software, rather than pure hardware.

Posted in:
Museum News

October 30th, 2016 ~ by admin

East German IC Institutions

MME S555C1 - Hobbyist edition 2708 EPROM - 1983

ZTFM  S555C1 – Hobbyist edition 2708 EPROM – 1983

Thanks to the input of a reader I updated the East German CPU page to be much more accurate as to the various institutions that existed, and their respective logos.  There were institutions in three different cities (Erfurt, Frankfurt, and Dresden), and they had amongst them 7 different names and a variety of logos.

It helps to remember that IC’s were made different in East Germany.  There was not so much corporations as we think of them in the West such as Intel or AMD that made this or that.  In East Germany (and the USSR) IC’s (and most everything else) were made by institutions, that were typically a government organization, or sanctioned by the government to do/make certain things.  These could be changed, consolidated, opened/closed at the whim of the government resulting in a lot of confusion in identity.  Add to that the changes brought with the fall of communism, and these institutions transition to modern corporation and you get some very interesting collecting opportunities.

The updated page should help ID’ing them a bit easier.

 

Tags:
, ,

Posted in:
Museum News

March 13th, 2016 ~ by admin

Part 3: Vintage IC Collecting – The How.

In Part 1 of our three part series on IC collecting we discussed why to collect vintage computer chips. For Part 2 we covered what to collect, how to set and keep a focus in your collection. For the final Part we’ll cover some of the ways of how to find and collect the IC’s you want.

Part 1: Why Collect Vintage Chips?
Part 2: What Vintage Chips should I Collect?
Part 3: How do I collect Vintage IC’s?

There are two main parts of the How of IC collecting. Where to I get my chips? and Where do I put them?  For most collectors cost is a concern, for the right money you can have most any chip, but since i have yet to find the dollar/Euro/yen tree cost is a factor in acquiring chips.  One of the greatest sources of chips is eBay.  Several categories in particular are a good source of chips, IC?Processors in the Business/Industrial category, the CPU/Processors and Vintage categories in Computing, and Scrap/Recovered Gold.  Of these Scrap Gold can yield some of the most interesting chips.  Scrap sellers in general though have no idea about what they are selling (as far as collectibility) but most are happy to work with you.  If you win a lot with a nice chip in it, send the seller a note to pack the chips well, and in most cases they will.  They are sold as scrap though so keep that in mind if they don’t come in perfect shape. This can be a good chance to learn the art of pin straightening.

Read More »

Tags:

Posted in:
Museum News, Research