Archive for the 'Museum News' Category

March 1st, 2016 ~ by admin

Part 2: Vintage IC Collecting – The What.

Where do I start? Where do I end? Focus!

Where do I start? Where do I end? Focus!

In Part 1 of our three part series on IC collecting we discussed why to collect vintage computer chips.  For Part 2 we’ll cover what to collect. which is the most important part of collecting (not just IC’s but anything).

Part 1: Why Collect Vintage Chips?
Part 2: What Vintage Chips should I Collect?
Part 3: How do I collect Vintage IC’s?

There are millions of different IC’s made since the dawn of the IC in the 1950’s, obviously it would not be prudent to try to attempt to collect all of them, so one needs to set a focus for their collection.  The earlier this is done, the easier collecting will be, and the less chance of going insane, broke, or both.  The CPU Shack, as the name implies, began collecting just CPU’s, the brains of computers.  Through the years (and due to things being donated to the museum) this has expanded to microcontrollers, SoCs. UV-EPROMs. GPU’s, and even the occasional DSP.  It’s a broader slice of IC’s then most would want to attemp, at least when starting.  So let’s figure out ways to gain a focus in collecting.

Read More »

Tags:

Posted in:
Museum News, Research

February 18th, 2016 ~ by admin

Part 1: Vintage IC Collecting – The Why.

First Start of IC Collecting

First Start of IC Collecting

This will be the beginning of a three part series on Vintage IC Collecting, as I get asked a lot, ‘why do you collect computer stuff?’ and How do you do it? Where do you find chips etc.

Part 1: Why Collect Vintage Chips?
Part 2: What Vintage Chips should I Collect?
Part 3: How do I collect Vintage IC’s?

These really are the fundamentals to collecting/curating anything, and are important if you wish to have any structure to your hobby of collecting.  Collecting itself seems to be built into human nature, and psychologists and evolutionary scientists have many theories as to why.. Freud, who else, claimed that people collect things due to ‘unresolved toilet training issues.’ Others see collecting as a evolutionary strength, that allowed for a better chance of survival, those that collected scarce resources, had a better chance of living to procreate.

Myself, I started collecting coins when I was young, among other things.  While scrapping out computers in High School I figured the processors should be saved, as the ‘brains’ of the computer, and thus my hobby, and the museum, began.

The Collection Progresses

The Collection Progresses

There really has become two main reasons for continuing to do so.  First, I see a need to preserve some small portion of the technology that has driven us to where we are today, and where we are going.  Second, its genuinely fun, the hunt for new chips, the research into finding where they were used, and why they were made and the camaraderie with fellow collectors.

This leads us to the Why, specifically for collecting Vintage IC’s.  Many assume that those who collect computer chips will be ‘a bunch of nerds’ and while some certainly are, there is a great variety.  Like other collecting areas, there are those who collect for economic reasons, they see a good deal, buy it, with the intent of reselling it for profit at some later date, and there is certainly nothing wrong with this.  Others have some historical connection with the chips they collect.  They may be retired Electrical/Computer Engineers, programmers and the like, that see collecting as a way to preserve some of what they did.

It gets big quickly without proper focus

It gets big quickly without proper focus

For some collecting computer chips is a matter of convenience, they have ready access to them (recycling, etc) and are drawn to the fact, that like coins, IC’s have an extrinsic value in their rarity, obscurity, or provenance, but also some intrinsic value in the precious metals they contain.  Computers chips also have the benefit that their entire history is contained in a period of time that numbers in the decades, 50 years, shorter than an average human lifetime, contains the current sum of IC history.  This can be seen to make the hobby more ‘manageable’ though we will see if Part 2, that this may not be the case.

For some, computers chips are shiny, pretty, and look ‘cool’ and thats all thats needed, they collect not for any historical, or technological reason, but for the fact that they like neat looking ‘stuff’.  Some collect very large/gold chips only for this reason, or wafers, because they are drawn first, to their beauty.
On the extreme of this is those, as a fellow collector in Romania once told me:

“Basically when I saw in the same place 3 different objects of the same type, my first thought is ” I should start a new collection”

And sometimes, that’s all it takes to get started.  Next week we will explore the What of collecting, how to determine what specific type of IC’s you want to collect, and figuring that out early is so important.

Tags:

Posted in:
Museum News, Research

July 11th, 2015 ~ by admin

MCS-8 Test Boards Now For Sale

MCS-8 Test BoardThe CPU Shack Museum is pleased to announce the availability of Test Board Systems for the Intel 8008 Processor.  This system will allow you to test, as well as design program for, the Intel 8008 8-bit processor as well as its several 2nd sources, including the Siemens SAB8008, the Microsystem International MF8008 and the unlicensed East German MME U808D.

The Test System is loosely based on the 1973 MARK 8 computer, one of the very first computers to use the 8008, which was arguably the worlds first 8-bit processor.

The Boards are available here for $149 with FREE Shipping Worldwide.

Posted in:
Museum News, Products

June 16th, 2015 ~ by admin

MCS-4/40 Test Boards once again in stock

After much delay the 4004/4040 Test Boards are now back in stock.  Only 9 of them so if you need one, order away.

Posted in:
Museum News, Products

June 11th, 2015 ~ by admin

Dallas: Reaffirming the Viability of the 8-bit Processor

The introduction of the Dallas Semiconductor DS87C520 reaffirms the viability of 8-bit processors for new and demanding applications.  Those were the words written about the the Dallas DS87C520 (and its ROMLess version the DS80C320) in 1994. The Intel MCS-51 architecture it was based on had been released 13 years prior, in 1981 and ran at up to 12MHz.  By 1994 the Pentium had been released, with speeds of up to 100MHz.  Full 64-bit processors were also available, yet the 8-bit processor continued to hold on, and grow.

Dallas Semi. was founded in 1984, by former Mostek employees.  Their first products were lithium battery backed SRAMs, a product pioneered by Mostek.  Dallas added power saving and sensing circuitry to them though, greatly enhancing their usefulness.  In 1987 they combined with with an MCS-51 microcontroller to make the DS5000, which ran at 16MHz and provided battery backed SRAM.

With the release of the DS87C520 in 1994 they redesigned the MCS-51 core, allowing it to complete a machine cycle in 4-clocks vs the original 12.  They were plugin compatible, providing a simple speed up for 8051 systems.  Max clock was also raised, to 33MHz as well as additional interrupts, 16K of EPROM, an extra 1KB of SRAM and many power saving features/modes.  Other companies (such at Philips, and Atmel) began to also make enhanced 8051s, including things such as Flash memory and expanded instructions/features.

Its now 2015, and the 87C520 continues to be made, as does hundreds of other MCS-51.  It was surprising in 1994 that the 8-bit processor continued to be viable, and perhaps to some, even more so, that 21 years later, it is still viable, and shows no signs of slowing down.  The recent push into the Internet-of-Things (IoT) market has 8-bit MCUs in Internet of Things yet again.  While many companies have marked numerous 16-bit and 32-bit designs as ‘a migration path from 8-bit’, that migration is yet to be seen.  There simply is no reason, no need, and no desire to plug a 32-bit processor in where an 8-bit processor, implemented in a few thousand transistors, will do nicely.

 

April 12th, 2015 ~ by admin

Processor Die Photos by Christoph Morlinghaus

Christoph Morlinghaus in front of the very large prints of an Intel 486DX and Motorola 68030

Christoph Morlinghaus in front of the very large prints of an Intel 486DX and Motorola 68030

I recently had the pleasure of helping noted photographer Christoph Morlinghaus with a die photo project.  Christoph takes photos with a large format 8×10 film camera, and wanted to do some of processor dies, so the museum sent him off a box of chips. After a lot of work decapping and cleaning the chips, as well as finding ones with the most interesting dies, Christoph was able to take some stunning shots, no easy feat with the long exposure times required for such a camera.  Exposure times for these shots can run into the minutes, and even something as minor as a truck driving by can create enough vibration to ruin the shot.  Dies also had to be selected to show a variety of detail, colors, and be big enough to take a picture of, ideally a half inch on a side or better.  You can view the results here on Morlinghaus.com. Some very large format prints are currently on display at the Snap! Gallery in Orlando Florida as well.

Christoph did 7 total die shots of a variety of processors spanning 15 years of computing.  Dies included are: Intel 186, 486 and Pentium (P54CS), Motorola MC68020 and MC68030 as well as a Cyrix Media GXm and Cx486DX2. A 17″x22″print of each was donated to the CPU Shack, which are now framed and hanging, where they make a very nice display, as well as truly artistic pieces.

Tags:
,

Posted in:
Museum News

March 29th, 2015 ~ by admin

I Just Poured Water on my Scanner….

Chip that come into the museum are all scanned on a Canon 5600F flatbed scanner.  It has a good (there is some better though) depth of field, and its fast.  Typically chips are scanned at 300dpi, or for small ones (or ones that have a die visible) 600dpi.  This keep the file sizes reasonable, yet still allows them to be studied in good detail on CPUShack.com as well our records.

There are on occasion chips that are VERY hard to scan, either the markings are very small, or very shallow.  This is becoming common on more modern chips, for one the chips themselves are smaller, and second, they are most often laser marked, and there isn’t enough thickness in the package (or die on some) for the Grand Canyon engraving of the 80’s.

1200 dpi dry scan

1200 dpi dry scan

 

This is a Intel QG80331M500 IO Processor made by Intel in 2007.  It is the replacement for the 80960 based I/O processors, using instead a 500 MHz XScale ARM Processor core.  This scan was done at 1200 dpi, the part number is visible, barely, but the S-spec and FPO (lot code) are not.  The markings are laser etched directly onto the surface of the silicon die.  This is fairly common on this type of chip (as well as most all of Intel chipsets).  How do we improve upon this?  Bumping the resolution to 2400dpi just makes a bigger blurry picture (with more noise).  What we need is better resolution, at where the scanner works best (less noise at 1200 dpi scan).

Thankfully we can use a ‘technology’ that is very much similar to how modern processors themselves are now made.  Dumping water on the scanner, also known as immersion scanning.

Read More »

December 20th, 2014 ~ by admin

Monsanto: Bringers of the Light

Monsanto MCT2 - LED Based Opto-coupler

Monsanto MCT2 – LED Based Opto-coupler

This little chip, dated from 1973, is part of the history of what we are surrounded by, LEDs.  And they have an unlikely and somewhat surprising beginning.  The MCT2 is an opto-coupler, basically an LED and a phototransistor in a single package, used for isolating digital signals.  The important portion here is the LED.  LEDs are in nearly every electronic product these days, and this Christmas season we see many Christmas lights that are now LED based.  THey are more efficient, and much longer lasting.  Certainly the eco-friendly choice for lighting.  And they have their roots in a company that does not always elicit an eco-friendly discussion.

That would be Monsanto.

That big ‘M’ on the package is for Monsanto, who from 1968-1979 was the leading supplier of LEDs and opto-electronics.  In 1968 there were exactly 2 companies who made visible light LEDs (red), HP and Monsanto, and HP used materials supplied by Monsanto to make theirs.

LED Christmas Lights

Read More »

November 25th, 2014 ~ by admin

MCS-80 Test Boards For Sale at the CPU Shack

MCS-80 testboard with included Tungsram 8080APC processor

MCS-80 testboard with included Tungsram 8080APC processor

The CPU Shack is excited to now offer MCS-80 test boards for sale and shipping now.  These boards are intended to test Intel 8080A processors as well as their many compatible second sources and clones (such as AMD, NEC, Toshiba, and many more!

Each board runs off of a min-USB connector making it very easy to use.  The 8080 processor is inserted into an easy to use ZIF socket making testing many different CPUs a snap.  Included with each board is a working Tungsram 8080APC processor, an Intel copy made in Hungary.

Head on over to the MCS-80 page to buy yours today!

November 12th, 2014 ~ by admin

Here comes Philae! Powered by an RTX2010

Comet 67P/Churyumov–Gerasimenko - Soon to have a pair of Harris RTX2010 Processors

Comet 67P/Churyumov–Gerasimenko – Soon to have a pair of Harris RTX2010 Processors

In less then an hour (11/12/2014 @ approx 0835 GMT) 511,000,000 km from Earth the Philae lander of the Rosetta mission will detach and begin its decent to a comets surface.  The orbiter is powered by a 1750A processor by Dynex (as we previously discussed).  The lander is powered by two 8MHz Harris RTX2010 16-bit stack processors, again a design dating back to the 1980’s.  These are used by the Philae CDMS (COmmand and Data Management System) to control all aspects of the lander.

All lander functions have to be pre programmed and executed by the CDMS with absolute fault tolerance as communications to Earth take over 28 minutes one way.  The pair of RTX2010s run in a hot redundant set up, where one board (Data Processing Unit) runs as the primary, while the second monitors it, ready to take over if any anomaly is detected.  The backup has been well tested as on each power cycle of Philae the backup computer has started, then handed control over to the primary.  This technically is an anomaly, as the CDMS was not programmed to do so, but due to some unknown cause it is working in such a state.  The fault tolerant programming handles such a situation gracefully and it will have no effect on Philae’s mission.

Why was the RTX2010 chosen?  Simply put the RTX2010 is the lowest power budget processor available that is radiation hardened, and powerful enough to handle the complex landing procedure.  Philae runs on batteries for the first phase of its mission (later it will switch to solar/back up batteries) so the power budget is critical.  The RTX2010 is a Forth based stack processor which allows for very efficient coding, again useful for a low power budget.

Eight of the instruments are also powered by a RTX2010s, making 10 total (running at between 8-10MHz).  The lander also includes an Analog Devices ADSP-21020 and a pair of 80C3x microcontrollers as well as multiple FPGAs.